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Auditory Nerve Structure and Function
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The auditory periphery as a signal
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A crucial distinction
excitation pattern vs. frequency response

e Excitation pattern — the amount of vibration
across the basilar membrane to a single sound.

— Input = 1 sound.
— Measure at many places along the BM.

e Essentially the envelope of the travelling wave
e Related to a spectrum (amplitude by frequency).
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A crucial distinction
excitation pattern vs. frequency response

e Frequency response — the amount of vibration
shown by a particular place on the BM to
sinusoids of varying frequency.

— Input = many sinusoids.
— Measure at a single place on the BM.
— Band-pass filters at each position along the basilar

membrane.
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Masking experiments

Listen for a probe (tyIEicaIIy a sinusoid) in a
background of a masker with a variety of
spectral shapes (typically a noise).

Assume: A listener has independent access to,

and can ‘listen’ selectively to the output of an

individual auditory filter — the one that will give

best performance.

— the probe frequency controls the centre frequency of
the auditory filter that is attended to

Assume: Only noise that passes through the

same filter as the sinusoid can mask it.

Assume: Only the ‘place’ principle applies — no
temporal information.

The power spectrum model of masking



The frequency specificity of
masking

Listen for a set of three pulsing tones (the
signal or probe).

These will alternate with masking noises
that occur twice each, and change through
the series.

If two masking noises in a row sound
identical, then you can’t hear the probe
tone — it has been masked.

When is the tone masked, and when not?



The masked audiogram

For a fixed narrow-band masker, determine the change in
threshold for sinusoidal probes at a wide variety of frequencies.
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The masked audiogram

Is a masked audiogram a
correlate of an excitation
pattern (something like a
spectrum) or a tuning
curve (something like a
frequency response)?
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Psychophysical tuning curves (PTCs)
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Psychophysical tuning curves (PTCs)

Determine the minimum level of a narrow-band masker at
a wide variety of frequencies that will just mask a fixed
low-level sinusoidal probe.
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Psychophysical tuning curves (PTCs)
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Is a psychophysical tuning curve a correlate of an excitation
pattern (something like a spectrum) or a tuning curve
(something like a frequency response)?



Why you can't
easily
interpret PTCs
at higher
levels:
Off-
frequency/
place
listening

From Gelfand (1998)
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Amplitude (dB)

PTCs at high levels do not involve
only a single auditory filter:
Off-frequency [off-place] listening
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lower probe level out of the filter
can be offset by even lower
masker level



Notch (band stop) noises
limit off-place listening
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FIG. 3.6 Schematic illustration of the technique used by Patterson (1976) to
determine the shape of the auditory filter. The threshold of the sinusoidal
signal is measured as a function of the width of a spectral notch in the noise
masker. The amount of noise passing through the auditory filter centred at the
signal frequency is proportional to the shaded areas.

From Moore (1997)



Notched noises
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Narrow vs broad filters
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Thresholds at different notch widths

Signal-to-Noise Ratio at Threshold (dB)
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Typical results at one level, and a
fitted auditory filter shape
(symmetric & asymmetric notches)




Now measure across level and assume filter
linearity at frequencies substantially lower
than CF
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Gain (dB)
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Low masks high, but not v.v.
Excitation patterns

70

MASKING IN DB

o — A e F1 L 17“+I'_ .;‘ L ‘ —. .
100 200 300 400 500 700 1000 2000 3000 5000 © 10,000

Frequency - Hz



Low masks high, but not v.v.
Frequency responses
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Main points

e The “filters” through which we listen are the
filters established in the inner ear, in SNHL as
well as normal hearing.

— supported by the similarity between
physiological & behavioural measurements

e The width of the auditory filter is an
important determinant in many aspects of
auditory perception, e.qg. ...

- how well we can hear sounds in noise
(which is almost always).

- how different spectral components
contribute to loudness

— whether phase changes are audible in
sounds



Main points

e Spectral components that go into one
auditory filter strongly interact ...

— whereas those that go into different filters
typically influence one another less

e Another terminology

- Sounds that fall into one auditory
filter are often said to fall into the
same critical band

e People will use whatever information is
available to them, even when the task
is as trivial as detecting a tone.



